skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Regan, B C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these “chemical fingerprints” to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime. 
    more » « less
  2. Abstract Modern electronic systems rely on components with nanometer-scale feature sizes in which failure can be initiated by atomic-scale electronic defects. These defects can precipitate dramatic structural changes at much larger length scales, entirely obscuring the origin of such an event. The transmission electron microscope (TEM) is among the few imaging systems for which atomic-resolution imaging is easily accessible, making it a workhorse tool for performing failure analysis on nanoscale systems. When equipped with spectroscopic attachments TEM excels at determining a sample’s structure and composition, but the physical manifestation of defects can often be extremely subtle compared to their effect on electronic structure. Scanning TEM electron beam-induced current (STEM EBIC) imaging generates contrast directly related to electronic structure as a complement the physical information provided by standard TEM techniques. Recent STEM EBIC advances have enabled access to a variety of new types of electronic and thermal contrast at high resolution, including conductivity mapping. Here we discuss the STEM EBIC conductivity contrast mechanism and demonstrate its ability to map electronic transport in both failed and pristine devices. 
    more » « less
  3. null (Ed.)